
a calorimeter at the critical point of the hemispherical model gave H l = 26.5 and H 2 = 
35 MJ/kg. 

The closeness of these results (deviation of not more than 5%) can be considered evidence 
of the reliability of both enthalpy measurement methods for rarefied infrasonic high tem- 
perature flows. 

NOTATION 

p, gas pressure; T, gas temperature; h, gas enthalpy; H, total enthalpy; p, gas density; 
u, gas velocity; Cp, specific heat of external degrees of freedom; kw, constant for cataly- 
tic recombination of atoms on surface; e, heat-exchange coefficient; R, radius of spherical 
model; Le, Lewis-Semenov number; Re, Reynolds number; r, radius of enthalpy meter channel; 
w, subscript indicating values on body surface; 0, subscript indicating value in incident 
flow, as well as initial radius of enthalpy meter channel. 
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USE OF THE IMPROVED THIN-WALL METHOD IN INVESTIGATING 

HEAT TRANSFER IN A HYPERSONIC WIND TUNNEL 

A. M. Bespalov,* A. I. Maiorov, 
and L. A. Rudometkin 

UDC 536.24.08:533.6.011.55 

The authors determine unsteady heat fluxes on a thin-walled model, taking account 
of two time derivatives of the measured temperature. 

A very sensitive method of thermal measurement in investigating heat transfer on models 
in wind tunnels is the method of microthermocouple measurements on thin-walled models, a 
method that has found rather wide use [1-3]. Thanks to the use of high-sensitivity measur- 
ing equipment [4] and the developed technology of microthermocouple installation [2] high 
spatial and temporal resolution of temperature fields in the test regions has been achieved 
[5, 6]. The density of location of microthermocouples on models of wall thickness 0.05-0.1 
mm is 7 items per n~n, the equipment sensitivity is 1"10 -6 V, and the time resolution is 
I.i0 -# sec. 

The data reduction of microthermocouple measurements on thin-walled models is ordinarily 
performed using the theory of regular regimes [7], or using a general relation connecting 
the time-dependent heat fluxes q(~) acting on the model with the rate of change of temper- 
ature T(~) of its internal surface 

q (~) = oc8 dT (~____)) ( 1 ) 
d ,  

To reduce the error of the approximation (I), we consider relations for calculating unsteady 
heat fluxes in which we take into account not only the first derivatives of the measured 
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Fig. i. Dependence of the reduced temper- 
ature (a) and the heat flux density (b) 
on the Fourier number: a) i) experiment; 
2) approximation of the smoothing spline; 
b) i) theory with the first derivative; 
2) theory with the first two derivatives. 

temperature with respect to time, but also the second derivatives. 

If we adopt the hypothesis, usual for heat conduction problems, that the temperature 
field of the model wall is a continuous function and has an infinite number of derivatives 
with respect to the coordinate x and time ~ then, using the one-dimensional heat-conduc- 
tion equation and an expansion of T(x, ~) in a power series in x, we can represent the heat 
flux function q(~) acting on the outer surface of the model wall in the form of the Stefan 
solution [8]: 

62~_ ~ T ~ )  (~), 
q(~) = ~ (2n - -  1)t a ( 2 )  

n =  

where T(~) is a function of the temperature of the inner thermally insulated surface of the 
model wall. 

To calculate the time-dependent heat flux using Eq. (2), we need not know the temper- 
ature distributions through the model wall thickness. However, the use of Eq. (2) to reduce 
the experimental data is made difficult by the fact that the problem of differentiating the 
experimentally determined temperature dependence T(T) is an incorrect problem, and that this 
is particularly important when calculating higher derivatives with respect to T(~). There- 
fore, formulation of the experimental problem is usually limited to cases in which the 
series on the right side of Eq. (2) converges rapidly and we can retain only the first few 
terms. 

Relation (i), which coincides with the first term of the expansion (2), was obtained by 
integrating the heat-conduction equation pc aT/~ = ~ 82T/Sx 2 with respect to the coordinate 
x from 0 to 6, and then replacing the average temperature over the model wall thickness 

by the temperature T(T) of its inner thermally insulated surface. It is correct to use 
Eq. (I) when reducing the results of thermal measurements on a thin-walled model because 
the coefficients in front of the derivatives T(n)(~) in Eq. (2) decrease rapidly as n in- 
creases, for small enough 6 and large a. However, in cases when the characteristic time 
to propagate heat in the model wall, equal to 62/(6a), is not negligibly small quantity com- 
pared with the characteristic time for variation of T(T), we must take account at least of 



the second term of the expansion (2). An expression for the heat flux, more accurate than 
Eq. (I), has the following form: 

[ _ _  6~ d2T(T) 1 q(~)=pc6 dT(~) ~ (3)  
d~ 6a dT z " 

The quantity ~2/(6a) in Eq. (3) describes the delay time for variation of T(x) relative to 
Tcp(T). This can be seen from the relation 

T ( ~ ) = T  �9 + ~ + c o n s t ,  

which can be derived from the equality 

dTav(*) __ ~ 62n-2 T(n) 
d~ -- ~ (2n-- 1)! a n-i (~)' 

n = l  

if we neglect terms of order o(6k), for k > 4. 

The error q(T) in Eq. (i) is on the order % O(6a), and the error in Eq. (3) is ~ O(6S). 
Thus, using the thin-walled method of Eq. (3) with improved accuracy we can reduce the main 
error of the thin-walled method (I), associated with an approximate examination of the heat 
conduction process through the model wall. 

To determine the values q(x) we must differentiate the experimental dependence T(~). 
This problem can be solved using matching cubic splines [9] as follows. We minimize the 
quadratic functional of the second derivative of the cubic spline SA(T) in the region D of 
the most probable deviations of the values of S~(x) from the measured values of T(~): 

Zmax 
0 [SA (~] = j' [S~ (~]z dr-~-  rain O, 

o D 
where 

D----{S~(~) :lS~(~)--T(Of<s(~), 0<~<~m=}. 
The minimization is accomplished by constructing in region D cubic splines with new nodes 
and nodal values: 

'O [Sa (*)] -+ min O, Di ----- {Sa (z) : I Sa (*~) -- T (*i)J < e (*i), i = 1 .... , n}; 
D i 

[Sa (~)] -+  min ~ ,  ]Sa ( r i ) - -  T (~,)] < e (ri), i = 1, . . .  , n, 
A 

w h e r e  T i ,  i = 1 ,  . . . ,  n a r e  t h e  n o d e s  o f  t h e  o r i g i n a l  m e s h  d i v i s i o n .  The  c o n f i d e n c e  i n t e r -  
v a l s  r describing the ranges of allowable deviations of values of the smoothing spline 
SA(x i) from the measured values of temperature T(T i) are determined from the primary reduc- 
tion of the experimental data using the methods of mathematical statistics. 

To confirm this method of determining unsteady heat fluxes on a thin-walled model we 
used the results of the thermal experiment of [5] in a hypersonic pulsed wind tunnel. The 
model, made in the form of a blunt semicone of vertex angle 30 ~ was set up in the test sec- 
tion in such a way that its planar surface was located parallel to the velocity vector of 
the unperturbed air flow. The central part of the planar surface had microthermocouples 

weldedto the inner thermally-insulated surface of nichrome foil of thickness 6 = 0.i mm, 
by the method described in [2]. 

The experimental results and the results of reducing them are shown in Fig. i in the 
dimensionless coordinates T = (T - Tin)/(Tma x - Tin), q = q~/[l(Tma x -- Tin)], Fo = a~/6 = 
The curves of q(Fo) obtained with the aid of Eqs. (i) and (3) are similar, i.e., their 
behavior agrees qualitatively. However, in the initial period of modelheating, corres- 
ponding to the unsteady regime of operation of the wind tunnel, there is a quantitative 
difference that reaches 20% of the range of variation of q(Fo). From the readings of the 
reference microthermocouples, using the method described in [6], we obtained an estimate 
of the error arising from the nonuniformity of the process of heat propagation in the model 
wall. This error in the experiment did not exceed 2% of the heat flux values determined. 

We shall give a possible explanation of the behavior of the heat flux function q as a 
function of the number Fo, by comparing it With the known wave diagram of operation of the 
wind tunnel and with the results of experiment [10] The start-up process in the pulse 
regime of operation of the wind tunnel is the process of unsteady expansion of the gas and 



is accompanied by substantial redistribution of energy between its different layers [Ii]. 
In the experiment the leading layer of gas, located immediately behind the bow shock, evi- 
dently has the stagnation temperature To, appreciably higher than the gas temperature in the 
tunnel chamber [i0]. For this reason in the initial period of model heating (for Fo ~ i) 
higher values of heat: flux q are observed. (The possibility of recording these depends on 
the width of the region of increased values of To, i.e., on the degree of rarefaction of the 
remaining gas in the working part of the tunnel for a given pressure in the chamber.) In 
accordance with the law of energy conservation in the gas there must exist a region with a 
decreased value of stagnation temperature T o . This region is characterized by low values 
of the heat flux q (for i ~ Fo ~ 2.5). In the quasisteady regime of operation of the tunnel 
(for 2.5 ~ Fo ~ 8) the values of q_do not change as much. However, beginning at a certain 
time (for Fo ~ 8) the heat fluxes q decrease sharply because of breakdown of the quasisteady 
flow when it is acted on by the arrival of the reflected rarefaction wave. 

It can be seen from Fig. 1 that the method used for reducing the experiment, Eq. (3), 
taking into account two time derivatives of the measured temperature, in comparison with the 
ordinary thin-walled method of Eq. (i), gives noticeably increased accuracy of calculating 
the heat fluxes in the unsteady regime of operation of the hypersonic wind tunnel. 

NOTATION 

T, temperature; Tin , initial temperature; Tmax, maximum temperature; Tav, average tem- 
perature; T, dimensionless temperature; q, heat flux density; q, dimensionless heat flux den- 
sity; S, cubic spline; D, region of smoothing; x, space coordinate; ~, time; ~max, maximum 
time; Fo, Fourier number; a, thermal diffusivity; ~, thermal conductivity; p, density; c, 
specific heat; 6, model wall thickness; A, mesh size; i, mesh node number. 
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